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Abstract

Risk assessment and HACCP are related, but fundamentally di�erent processes. Four major elements of risk assessment are

commonly described (hazard identi®cation; exposure assessment; dose-response assessment or hazard characterization; and risk

characterization). Some similarities exist between the inputs for the ®rst elements of risk assessment (hazard identi®cation) and

HACCP (hazard analysis). However, HACCP involves the identi®cation of critical control points of a process for the purpose of

producing a ÔsafeÕ product, and thus is essentially a risk management procedure that does not estimate risk with attendant un-

certainty as in the formal structured procedure described for risk assessment. For quantitative models in microbial risk assessment,

exposure assessment requires data for pathogen occurrence, density or level, and distribution in foods and live animals, parameters

for growth and decline, and consumption information. A crucial di�erence between chemical and microbial risk assessment is that

for the latter, exposure models must account for pathogen growth and deactivation, termed predictive microbiology. This ®eld has

emphasized prediction of the expected changes in a population of organisms and is extended by an example accounting for the

stochastic or random variability of microbial growth in a given circumstance. Dose-response assessment, the third element of risk

assessment, is the crucial link between exposure in food to adverse human health outcomes. Data, from controlled human studies

with healthy adult volunteers to describe dose-response relationships, are limited. Di�erences between human sub-populations may

be inferred from animal studies, based on a common mechanism, such as the observed pre-disposition of antibiotic-treated animals

to subsequent challenges with enteric pathogens. Professional organizations, such as the Society for Risk Analysis, can greatly assist

governments, industry, academia, and stakeholders in scrutinizing the risk analysis processes of risk assessment, risk management,

and risk communication. Published by Elsevier Science Ltd.
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1. Introduction

Risk assessment and HACCP are related, but fun-
damentally di�erent processes. Risk assessment is a
structured science-based process to estimate the likeli-
hood and severity of risk with attendant uncertainty.
For risk assessment many organizations recognize four
major elements: hazard identi®cation; exposure assess-
ment; dose-response assessment or hazard character-
ization; and risk characterization (Fig. 1). A risk
analysis links a risk assessment with both risk commu-
nication and risk management. The starting point of a
risk analysis, however, need not be a risk assessment.
Rather, in the US, risk communication is receiving in-
creasing attention as the starting point for risk analyses

for transmissible spongiform encephalopathies, Salmo-
nella enteritidis, and E. coli O157:H7 (USDA, www.
fsis.usda.gov/OPHS). Dialogue with stakeholders, in-
cluding industry, academia, government, and the gen-
eral public, is increasingly viewed as essential
throughout the entire risk analysis process. The results
of risk assessments are weighed by risk managers with
other factors to support decision-making processes.

HACCP systems are examples of risk management
programs. Speci®cally, HACCP involves the identi®ca-
tion of critical control points of processing, and pro-
cessing parameters for these that if met would assure
that the produced product meets speci®ed standards
that imply a safe product. Some similarities exist be-
tween the inputs for the ®rst elements of risk assessment
(hazard identi®cation) and an hazard analysis (of a
HACCP program). For example, hazard identi®cation
and hazard analysis might both consider data from ep-
idemiological investigations: risk factors, food vehicles,
associations with adverse health outcomes, the nature
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and severity of illness, and e�ects in sensitive sub-pop-
ulations. Together with a cost/bene®t analyses, the re-
sults of the risk assessment can be used for de®ning
acceptable product characteristics or processing goals
for a HACCP program.

Qualitative hazard identi®cation or risk assessment
can assist a risk manager in priority setting, policy de-
cision-making, such as decisions to allocate resources to
sampling. Some qualitative assessments can contribute
to the published literature on risk analysis and serve as
tools to identify and prioritize research needs. The Co-
dex Committee on Food Hygiene is committed to
valuing qualitative information for risk assessment as
well as encouraging the use of quantitative data to the
extent possible (CCFH, 1998).

Many factors may in¯uence the decision to conduct a
qualitative versus a quantitative risk assessment. Obvi-
ously, if no data are available to make inferences from,
then a quantitative risk assessment would not be possi-
ble. Constraints in data quality, time, personnel, or re-
sources may not permit a full quantitative risk
assessment. However, data gaps are not necessarily a
barrier to quantitative risk assessment. Our bias has
been towards ÔLetting the data speak!Õ, using thorough
data analysis, formal inferencing, and striving for com-
plete documentation of variability and uncertainty

(Marks, 1998a,b; Coleman, 1998). The use of experts for
a risk assessment can be consistent with this approach.
Kaplan (1992) advocates eliciting the data from the ex-
perts, not their opinions of the possible values of pa-
rameters. Good practice for risk assessors would include
elicitation of the evidence from the experts and creation
of a consensus state-of-knowledge curve as a means to
address data gaps so that uncertainty and variability can
be computed (Kaplan, 1992). Otherwise, the judgements
and opinions of experts may impose on the risk assess-
ment signi®cant bias and overcon®dence that could mis-
inform decision makers about the magnitude of risk and
attendant uncertainty.

For quantitative models, food safety systems are
complex to model, both biologically and mathemati-
cally. Although models are admittedly simpli®cations of
reality, realistic and plausible models for farm-to-table
risk assessment are not simple. For example, Fig. 1 il-
lustrates some di�culties in simply modeling microbial
hazards. The ®gure depicts the need to realistically
model microbial growth and decline, and cooking pro-
cesses using thermal heat transfer equations. Examina-
tion of the data with a mechanistic perspective might be
useful for developing simple approximations for the
complex analytical model systems. Because of the
complexity of the model and the desire on the part of

Fig. 1. A framework for microbial risk assessment (Marks, 1998, with permission from Risk Analysis).
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risk assessors to present simple and succinct models,
particular attention is needed to assure that the risk
assessment process is transparent, which enables critical
review of the work.

2. Exposure assessment

Exposure assessment models requires data for
pathogen occurrence, distribution of densities or levels
in food, parameters for growth and decline, and con-
sumption information (Marks, 1998a). Of course, the
availability of high quality farm-to-table exposure data
are limited. When data are available, risk assessors
must account for measurement and sampling errors for
microbiological methods, such as the Most Probable
Number (MPN) methods, which can produce false
negative results (Fontaine, 1978; Marks, 1998b). A
crucial di�erence between chemical and microbial risk
assessment is that for the latter, exposure models must
account for pathogen growth and deactivation. Mod-
eling growth and deactivation is termed predictive
microbiology (McMeekin, 1993). Predictive microbiol-
ogists have generally developed deterministic models
that estimate the expected value, or average growth
rate, often based on growth of cocktails of microbial
strains in broth cultures without the competitive mic-
ro¯ora associated with speci®c food substrates
(USDA/ARS, 1999). Thus, information concerning
di�erences of growth rates and lag times for di�erent
pathogenic strains is often unknown. Some predictive
models have limited independent validation and thus
limited plausibility for risk assessment. Growth rates
and lag times may di�er between pathogenic strains by
orders of magnitude (Whiting, 1998, personal com-
munication).

Microbial growth is not an all-or-none, deterministic
process, but rather a stochastic or random process in-
volving a population cells (Edelstein-Keshet, 1988;
Karlin, 1971; Keen, 1992; Kendall, 1948). Stochastic
variation of microbial dynamics is critically important
for use in quantitative risk assessments to describe the
full range of possible risk. Development of methods to
account for variations of the natural range of popula-
tion growth and decline are needed to support public
health risk assessment.

One elementary but important example of stochastic
process in exposure assessment is simple linear birth
process described in the ®eld of population biology. The
di�erential equation dN�t�=dt � lN�t�, where t repre-
sents time, describes the rate of change of the number of
organisms, N�t�, in the population, to be proportional to
N�t�, with proportionality constant, l. This constant, l,
is often referred to as the speci®c or exponential growth
rate. For example, the above equation predicts that at
time t1, a population of 10 cells increasing by a factor of

10 would be expected to increase by 90 cells so that the
®nal population size would be 100 cells. However, a
more realistic solution can be mathematically derived
under suitable assumptions. One assumption is a simple
linear birth process in which the probability of a cell
division in a small increment of time is a constant, l,
and the possibility of two cells dividing in a small in-
crement of time is very small. Then it can be derived that
the distribution of the increase number of cells at time t
is that of a negative binomial distribution with proba-
bility parameter eÿlt and number parameter N0, the
initial number of cells. The expected increase in the
number of cells is N0(eltÿ 1). In the example given,
N0� 10, and l� ln(10)/t1. Using the negative binomial
distribution, the actual increase might range from 30 to
185 cells with 99% probability. Thus, the negative bi-
nomial distribution predicts a ®vefold range of relative
growth due solely to the inherent variability of microbial
population growth.

A second simple example of stochastic growth pro-
cess in exposure assessment extends the model of the
above paragraph by assuming the existence of a lag
phase, a period of time before a cell can divide. The
mathematics to describe the exact distribution of
growth with lag is complex. Cells prior to time 0 are
assumed to be in a stationary state. After a change in
the environment that causes growth, time, t0, is needed
for an organism to acclimate itself and to start the
machinery necessary for growth. Once the time exceeds
t0, the cell divides and the new cells grow and multiply.
To develop a model for the number of cells in the
above described random model, it is convenient to keep
track of the set of original cells, O, and the set of new
cells, D, that are a result of cell division. As an ex-
ample, the D cells are assumed to follow the simple
linear birth process described above with parameter l.
A new variable must be introduced, which describes the
random, lag phase variable, de®ned as k(t), the in®ni-
tesimal cell `death' rate of the O cells. In one sense,
ÿk(t) represents the probability that the O cell divides
into two D cells and thus no longer exists at time t.
Symbolically, this can be represented by O !k D� D.
Further the cells created from a division of D cells are
assumed to behave as D cells and divide according to
the simple linear birth process described in the previous
paragraph.

In this application, the initial population is assumed
to consists of one cell, so that N0� 1. The probability
for the single cell surviving at time t is eÿc�t�, where
c�t� � R t

0
k�s�ds. Let t0 be the time that the cell divides.

The cumulative distribution function for the random
variable t0 is H(t)�Prob(t0 < t)� 1ÿeÿc�t�, and the
probability density function of t0 is: h�t� � c0�t�eÿc�t� �
k�t�eÿc�t�. The probability of n organisms at time, t, that
is prob(N(t)� n)� pn(t) can be derived and is given in
Eq. 1.

M.E. Coleman, H.M. Marks / Food Control 10 (1999) 289±297 291



p1�t� � eÿc�t�

pn�t� � �nÿ 1�
Z t

0

eÿ2l�tÿs��1ÿ eÿl�tÿs��nÿ2
dH�s�; n > 1:

�1�
The expected value of N(t) can be calculated (Eq. 2):

E�N�t�� � eÿc�t� � 2

Z t

0

el�tÿs� dH�s�: �2�

The variance can be calculated (Eq. 3):

var�N�T �� � 6

Z t

0

e2l�tÿs� dH�s� ÿ 4

Z t

0

el�tÿs� dH�s�
� E�N�t���1ÿ E�N�t��:

�3�

A convenient probability distribution for the time of cell
division with density of form c0�t�eÿc�t� is the Weibull
distribution, for example, � c�t� � ta=b, where a and b
are constants. Thus the above model has three param-
eters: a, b, and l. Fig. 2 provides an example of the
above 2-stage birth model assuming initially a single cell
with a� 5, b� 10, and l� 1. By assumption, the num-
ber of cells cannot decrease, thus the lognormal distri-
bution is possible to use for approximating the actual
percentiles. Curves are plotted for the expected log10

relative growth and estimates of the 95% percentile of
the log10 relative growth using the extreme value, log-
normal, and the negative binomial distributions with
probability parameter 1=E�N�t�� and number parameter
equal to 1. In addition, percentiles determined using
10 000 Monte Carlo simulations computed on @Riskâ,
version 3.5b, are plotted (Fig. 2). The star bursts on the
®gure represent the exact calculations of time (per-
formed on Mathcadâ version 4.0) when the probability
of the number of cells being less than or equal to n
equals 95%, for n � 1; 2; . . . 6, using Eq. 1.

The expected value from Eq. 2 is shown in the lower
curve (Fig. 2). This distribution re¯ects expected relative
growth with lag. In contrast, to depict variability, the
remaining lines shown as the upper curves in the ®gure
represent the 95th percentiles. In generating the number
of organisms for risk assessment, 5% of the generated
values would fall above these curves. The lognormal and
the extreme value distributions give virtually the same
estimates and both provide very good estimates for time
>1.5; the approximation using the negative binomial
overestimates the actual percentiles as t gets larger. A
clear objective of developers of risk assessment meth-
odology is to identify approximations to the exact
distributions among the many more convenient distri-

Fig. 2. Exact and approximate distributions for stochastic growth with lag.
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butions available in many commercial software prod-
ucts.

3. Dose-response modeling

Dose-response assessment, the third element of risk
assessment, is the crucial link between exposure in food
and adverse human health outcomes. For dose-response
assessment, di�erent mathematical and biological chal-
lenges arise. Ideally, risk assessors would like to base
their dose-response models on data from representatives
of the entire human population in multiple-dose chal-
lenge studies with the administration of the pathogen of
interest and observation of the likelihood and severity of
illness. Data are limited from controlled human studies
with healthy volunteers to describe dose-response rela-
tionships. A ®ne review of much of the available human
data for microbial dose-response modeling was prepared
by Teunis and colleagues (1996). Many of these studies
involved healthy male adult volunteers, hardly typical of
more sensitive human sub-populations.

An example of a dose-response model based on data
from human clinical studies is non-typhoid salmonello-
sis (Coleman, 1998). Although the taxonomy of the
Salmonella genus is in ¯ux (DÕAoust, 1997), the Salmo-
nella strains administered to healthy human males could

be considered the same species, di�erentiated by surface
antigens into serovar classi®cations Anatum, Bareilly,
Derby, Meleagridis, and Newport (McCullough & Eisle,
1951a±c). Data for fours strains of Salmonella pullorum
(McCullough & Eisle, 1951d) were excluded from the
analysis (Coleman, 1998) because these strains appear to
function as speci®c poultry pathogens rather than as
human pathogens. The observed human data for the
non-typhoid Salmonella serovars are labeled as diamond
symbols (Fig. 3). Great variability is noted between
serovars and strains (Coleman, 1998), some non-
pathogenic at high doses in healthy adults, and others
that cause 100% of the treatment groups to become ill.
Rather than imposing conservatism in the risk assess-
ment model and selecting only the most virulent strains,
the non-typhoid salmonellosis model treats the available
human data as strains representative of the population
of strains present in the diet. This approach permits
more realistic modeling in Monte Carlo simulations
which select randomly from among the sample of
available strains to predict a dose-response relationship
for an unknown strain. If these strain di�erences are not
accounted for, then the models represented in Fig. 3 as
two possible models, one using the the extreme value
(Gompertz) function and the other using the logistic
function, are both rejected for poor ®t (Coleman, 1998).
By incorporating strain variability, through using an

Fig. 3. Human non-typhoid salmonellosis data (McCullough & Eisle, 1951a±d) and models (Coleman, 1998, with permission from Journal of Food

Protection, copyright held by International Association of Milk, Food, and Environmental Sanitarians).
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analysis of variance, both Gompertz and logistic func-
tions are found to provide a statistically good ®t to the
data (Coleman, 1998) and predict low likelihood of
adult illness at challenges of 106 non-typhoid Salmonella
cells for healthy adults. These models (Coleman, 1998)
thus include variability due to di�erences in strain as a
parameter with a prescribed distribution.

Serious limitations of the available human data exist,
especially since a great proportion of human illness in
the US arises from other non-typhoid serotypes, such as
S. Typhimurium and S. Enteritidis (CDC, 1995). Un-
known are dose-response e�ects at low dose exposures
of 1, 10, 100, and even 1000 non-typhoid Salmonella
cells and dose-response e�ects of more susceptible hu-
man sub-populations such as children. Further, emerg-
ing pathogens present di�cult challenges for dose-
response modelers. Emerging pathogens such as S.
Typhimurium DT104, will require some focused atten-
tion by multi-disciplinary risk assessment teams to de-
velop plausible surrogate dose-response models in the
absence of direct human data for the particular patho-
gen strains or serotypes of interest. The need to address
surrogate dose-response models mechanistically using in
vitro and animal model systems was highlighted by the
recently awarded collaborative agreements to extend

ongoing human clinical trials by the US Food and Drug
Administration under the PresidentÕs Food Safety Ini-
tiative (www.vm.cfsan.fda.gov). The goal of the collab-
orative research funding is to promote development of
plausible dose-response models which are grounded in
the biology of pathogenic interactions, utilizing mecha-
nistic approaches to model events of pathogenesis. Ac-
counting for variability in each aspect of the disease
triangle (pathogen, host, and environment) is of im-
portance to risk assessors.

Dose-response modelers using data from the human
feeding studies generally treat pathogenesis as a black
box (Fig. 4, with permission from JFP; Coleman, 1998).
The pathogen is administered, and the adverse response,
diarrhea, is observed. One might be able to illuminate
the black box using more mechanistic approaches
(Roth, 1995; Salyers, 1994) such as compartment mod-
eling utilized in pharmacokinetic and pharmacodynamic
modeling. Exposure assessment could be extended from
farm to stomach, and then dose-response modeling
could begin in the lower GI tract on tissue, cellular,
molecular, and perhaps genetic levels (Jones, 1997; Ne-
idhardt, 1996; Roth, 1995; Salyers, 1994). However,
much research is needed for developing the parameters
for such a model in humans.

Fig. 4. Black box of pathogenesis (Coleman, 1998, with permission from Journal of Food Protection, copyright held by International Association of

Milk, Food, and Environmental Sanitarians).
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An alternative approach involves consideration of
mechanistic data from in vitro and animal models to
inform human dose-response modeling. For example, in
addition to human data (McCullough, 1951a, 1951b,
1951c, 1951d), murine challenge studies exist that
demonstrate di�erential host susceptibility to non-ty-
phoid salmonellosis (Miller, 1954; Bohnho�, 1954).
Miller (1954) demonstrated that mice treated with
streptomycin were much more sensitive to subsequent
challenge with S. Enteritidis than control mice. The
initial murine study was extended as a timecourse ex-
periment in which mice treated with streptomycin were
subsequently challenged with S. Enteritidis (SE) at 1±5-
day intervals following antibiotic administration
(Bohnho�, 1954). The full protective e�ect of the mic-
ro¯ora was nearly restored to control levels by the 5 day
interval. However, the mice challenged with SE 1 day
following streptomycin disruption of the protective
micro¯ora were dramatically more sensitive to chal-
lenge. The evidence supporting this conclusion is a
100 000-fold reduction in the ID50, the dose at which
50% of treated animals exhibited infection. The murine
data demonstrated dramatic shifts in the shape and
position of the murine dose-response curve for salm-
onellosis relative to time after antibiotic administration,
a known risk factor for human gastrointestinal illness
(D'Aoust, 1997).

Data from the murine studies can inform and extend
the human dose-response model (Fig. 3) to account for
variability in host susceptibility. The underlying mech-
anism of this profound e�ect seems likely to be a general
biological phenomenon, the strong protective e�ect of
the indigenous micro¯ora in healthy animals and greater
susceptibility in animals with disruption of their normal
¯ora by antibiotic treatment. A family of murine dose-
response models was derived from these studies that
re¯ect di�erential sensitivity of mice. From our analysis
of the murine studies, a family of human dose-response
curves (Fig. 5) was generated. The right-most curve in
Fig. 5 is the Gompertz curve from Fig. 3, based on the
human non-typhoid salmonellosis data of McCullough
(1951a,c). The human curve was shifted to the left using
a vector from the murine studies for di�erential sus-
ceptibilities 1±5 days after antibiotic administration to
the mice. The left-most curve in Fig. 5 represents the
most susceptible human, based on pathogen challenge 1
day after antibiotic treatment of mice. As observed in
the murine studies, the variability derived for human
susceptibility also spans at least ®ve orders of magni-
tude, the ID50 for the most sensitive sub-population
depicted in the left-most curve is less than 103 bacterial
cells versus nearly 107 for healthy adults not subject to
antibiotic disruption of their indigenous micro¯ora.
This family of dose-response curves might be of use in

Fig. 5. Family of human dose-response curves informed by mechanistic data from murine studies
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future risk assessment for non-typhoid salmonellosis,
accounting for the variability in host sensitivity of sub-
populations with di�erential impairment of the full
protective e�ect of the indigenous micro¯ora of a heal-
thy GI tract for adults.

A logical extension of this study is consideration of
age-dependent e�ects associated with enhanced suscep-
tibility of children to gastrointestinal diseases such as
non-typhoid salmonellosis (CDC, 1995; Coleman,
1998). Researchers have taken advantage of the obser-
vation of enhanced susceptibility in young animals and
gnotobiotic animals as sensitive test systems for patho-
gen challenge studies (Hentges, 1983). Age dependency
might be directly explored in mechanistic studies using
such animal models or in vitro assays (Roth, 1995;
Salyers, 1994). However, in lieu of human data, a risk
assessor might assume that the left-most curves derived
at 1- and 2-day challenge post-antibiotic administration
in mice (Fig. 5) appear to be a more plausible models for
the dose-response relationship of children than the right-
most curve derived from healthy adult volunteers. These
derived 1- or 2-day curves may also be appropriate in-
ferences for children if more frequent antibiotic admin-
istration is a factor in their enhanced susceptibility to
gastrointestinal diseases. A complete risk assessment
should acknowledge the possibility that children may
su�er greater frequency of disease as a result of more
frequent or higher levels of exposure, due to particular
age-dependent behaviors or dietary di�erences, in ad-
dition to likely mechanisms that increase susceptibility.

4. Conclusions

The process of conducting risk assessments is well
described as a formal, structured process that is both
complex and evolving. Our hope is that our work kin-
dles interest in other organizations to conduct research
that is directly applicable to assist risk assessors with the
development of more plausible exposure and dose-re-
sponse models.
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